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The maximum entropy characterization of the von Mises distribution on the circle is
exploited to derive a consistent goodness of fit test for the von Mises distribution. Monte
Carlo simulation results are tabulated giving critical values of the test statistic for various
sample sizes and values of the concentration parameter. A power analysis is presented
for various alternative hypotheses, comparing this entropy statistic to two other com-
peting goodness of fit statistics. The entropy statistic is shown to compare favorably and
may be more attractive, especially considering its ease of computation.
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1. INTRODUCTION AND REVIEW

For a distribution function F, with density function fon R', entropy is
measured by the integral

Hp=- [ Zf(X)logf(X)dx-

This may also be re-expressed as

Hin= [ llog{-af,’l-,r‘(m}dp,
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for which a consistent estimate is given by Vasicek (1976):

Iy n
Hypp =n"! Zlog{ ”Zr_n(x(i+m) - x(i—m))}- (L.1)
=1

In the above, x(; indicates the ith order statistic, and 2m is the size of
the steps used for the spacings X(.m)—Xu—m) With the restriction
that m < n/2. Consistency of H,,,, as n— oo, m— oo and m/n— 0, is
proved in Theorem 1 of Vasicek (1976).

For density functions defined on R’, it is well known that for fixed
first and second moments, the distribution with the maximum entropy
is the normal distribution (Kagan, Linnik and Rao, 1973, p. 410). A
test for normality, using this characterization, was first developed by
Vasicek (1976). The intuition behind the test is that the maximum
entropy for a normal distribution can be calculated analytically, and
thus a sample’s entropy should be close to this value if the sample
comes from a normal distribution. The null hypothesis of normally
distributed data is rejected for small sample entropies.

For various sample sizes and spacing widths, Vasicek (1976)
tabulates the critical values of the test statistic and provides some
power comparisons of the entropy statistic relative to various other
goodness of fit tests like the Kolmogorov-Smirnov, Cramer-von
Mises, Kuiper V, Watson U3, Anderson-Darling and Shapiro-Wilk.
None of the tests performed uniformly better for all of the alternative
hypotheses examined: exponential, gamma, uniform, beta, Cauchy.
However, the entropy statistic had the highest power for three of these
five alternatives.

2. GOODNESS OF FIT TESTING
OF THE von MISES DISTRIBUTION

A statistic to test for goodness of fit of the von Mises distribution will
now be derived. It is based on the von Mises’ maximum entropy
characterization on the circle, for fixed mean direction and circular
variance.

ProrosiTioNn | Among all probability distributions on the circle, f(6),
0<80<2m with fixed mean direction py and “‘circular variance”
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(1—p), that is

2
/ cos0f(6)d0 = pcosyy
0 (2.1)

2
/ sin0f(6)d6 = psin gy,
0

the entropy of f(6),

2m

H(f) = - A f(0)logf(6)db

is maximized when f(6) is the von Mises distribution.

A proof of this result can be found in Mardia (1972, pp. 65-66),
and can also be derived quite easily via Theorem 13.2.1 of Kagan,
Linnik and Rao (1973, p. 409).

To assess the goodness of fit of a von Mises distribution for a set of
data, the sample entropy will be compared to the entropy of a von
Mises distribution, which is given by

H(f) =~ [ f®)ogs(6)ao
_ /°° exp{xcos(f — u)}
I 2l (k)
= log [2rly(k)] — KA(x)

2rlo(k)

[—log (27Io(k)) + K cos(f — u)]dé

where A(k)=I(k)/Is(x), and I, and I, are the modified Bessel
functions of the first kind, orders 0 and 1 respectively.

Now, applying Theorem I from Vasicek (1976), under the null
hypothesis that a sample of observations xi,. .., x, comes from a von
Mises distribution, the statistic H,,, given in (1.1), is a consistent
estimate of H(f), defined in (2.2). That is,

2nly(k)
Hon = log [exp(nA(n))]’
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as n— oo, m — oo and m/n— 0. Using the fact that
Hpp =n"! zn:log “n_(x(i+m) = X(i-m))
i=1 2m l
n 1/n
=D log o (X(tem) — X(i-m) /
s 2m i+ i—m
n z 1/
= log {Eg[(x(prm) — X(i-m))] },

we use a consistent estimate £ of x, to define

o _ xD{Hm} exp{AA(4)}
m Ip(R)

o \ 1/n
= %ilg-?g)—}— [H (X(i4m) — x(,-_,,,))} : (2:3)

i=1

Then, under the null hypothesis, we have

k.. 7, SXR{H()} exp{rd(x)}

= 2.

That is,

P
Ky — 2,

as n—oo,m—oo and m/n—0. Again, samples coming from
distributions that are not von Mises, will tend to have lower sample
entropies, and thus smaller values of K, The null hypothesis is
therefore rejected for sufficiently small values of K,,. A discussion
regarding the definition of spacings on the circle and the order
statistics x; used in the calculation of (2.3) is presented in Section 2.1.

It is possible to derive the asymptotic distribution of H,,, when a
simple null hypothesis is used, one in which p and « are specified. By
taking u(, = Fo(x(y), and applying H,,, to u(1), . . . , #(n), ONE can employ
the asymptotic theory for H,,, developed by Dudewicz and Van der
Muelen (1981) for testing uniformity. However, even for a sample size
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of 100, Dudewicz e? al., concede that the asymptotic theory could not
be validated by simulation results. Additionally, as will be remarked
later in Section 2.2, one advantage of the entropy statistic presented
in this paper, is that the distribution function does not need to
be evaluated. This advantage would be lost if the transformation
uq = Fo(x(;) was required.

More recently, van Es (1992) considered the asymptotic distribution
of a statistic very similar to Vasicek’s estimate of entropy (1.1). He
shows that for a density £, defined on finite support and satisfying the
Lipschitz condition, if m,n — oo and m= o(n'/?), the statistic defined
by

1 n—m n+1 n 1
Vom =——73 _log (Xerm) = X(p) | + 2t log(2m) —log(n)

- i=1 m
has the asymptotic distribution given by

Y2 (Vi — H(f)) S N(0, var(log(£(X)))), (2.4)

where H(f) is the entropy of density f.

Unfortunately, even though it can be shown that the von Mises
distribution is Lipschitz, simulations could not confirm the result in
(2.4) for the von Mises case. Also, as might be expected, simulations
show that for finite n and m the distribution of the test statistic is
highly dependent on the choice of m, and there is no guide as to what
step size should be usec “-t a fixed and finite n. These two confounding
factors make the asym,..tic theory inapplicable in practice. For this
reason, the asymptotic distribution of the entropy statistic, K., (2.3),
will not be pursued further at this time.

Instead, Monte Carlo methods are used to find critical values for the
statistic K,,,. For each of various sample sizes and values of x, 5000
samples were generated from a von Mises distribution. From each
sample, K, was calculated. A condensed table of 95th and 99th
percentiles are given in Table 1. The choice of step size, m, in the
tabulation of critical values was according to the step size that yield-
ed the largest test statistic. Some smaller scale simulations were
performed to compare powers using various step sizes, and it was
usually found that the step size yielding the largest critical values also
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AN ENTROPY-BASED TEST 325

yielded the best power. This phenomenon has also been documented in
the papers by Gokhale (1983) and Dudewicz and Van der Muelen
(1981).

In practice, k is generally unknown, in which case we suggest using
the maximum likelihood estimate to decide which row to use in the
tabulated critical values. Computation of the MLE for « is detailed
in Section 2.1. The simulated power and significance levels in Section
2.2 are obtained vig the MLE. In particular, it is shown that using
an estimate for x does not adversely affect the significance level of
the test.

2.1. Calculation of the Test Statistic

To calculate the statistic

o " 1/n
Ko = M [H(x(i+m) - x(i—m)):| ’

2mi (fe i1

a consistent estimate for s is needed, and the m-step spacings are
required.

The maximum likelihood estimate £ of x, which is a consistent
estimate, is given by

R .. R
A(R) = ;;ZCOS(x,- —f)= s
i=1

where fi is the circular sample mean direction, and R is the length of
the resultant of the » unit vectors (cos x;, sin x;), i=1,...,n. Best and
Fisher (1981) provide an approximation of 4~ !(x):

2x +x3 + (5x%) /6 0<x<0.53
A'(x)=1{ —04+1.39x+043/(1-x) 0.53<x<0.85
1/(x* — 4x? + 3x) x> 0.85,

The calculation of Iy(R) can be carried out by some computer
packages, but can also be done using a polynomial approximation
given by Abramowitz and Stegun (1970). Letting ¢t = x/3.75,
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0<k <3.75:

Io(k) = 1+ 3.5156229F + 3.0899424¢* + 1.20674921°
+0.2659732¢ + 0.03607681'° 4 0.0045813¢'2

k>3.75:

k'2e™"Iy(k) = 0.39894228 + 0.0132859¢~" + 0.002253192
— 0.00157565¢3 + 0.00916281~* — 0.020577061 >
+0.02635537t% — 0.01647633¢7 + 0.00392377¢78.

Circular statistics are ideally invariant with respect to the choice of
the zero direction. This will be kept in mind when determining the
m-step SPACings X(;+ m)— X(i—m). There are two ways to define the spac-
ings on the circle. One method is to utilize the circularity of the
observations, and to take X+ iy = X((i+ m) mod )+ 27 for values of i+m
larger than n. In the exploration of the sample entropy, H,.. (1.1), for
von Mises data, this was the first method of spacings used, as it fully
exploits the circularity of the data, and also makes H,,, invariant with
respect to the zero location. Results, however, showed that the statistic
behaved irregularly, and did not approximate the population entropy
very well, especially for large values of .

The second method is equivalent to Vasicek’s (1976) definition of
the spacings for linear data, where truncation is used; that is, let

X(i+m) = X(n); i+m>n and

X(i—m) = X(1), i-m<l1.

However, under this definition of spacings, H,,, will not be invariant
under rotations, because the arc between and x(g) and x, is not being
utilized, and will vary under different choices of the zero direction. The
solution to this problem is to define x(g) and x, such that the largest
gap between adjacent observations is between x) and x (see Fig. 1).
Under this definition of the order statistics, the spacings will be
invariant under rotations, and hence H,,, and K,,, will be as well. In
terms of sufficiency, disregarding the largest gap can be reconciled with
the fact that the length of this omitted gap could be obtained by
subtracting the sum of the other arc lengths from 27.
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FIGURE | Defining the order statistics.

One final remark about the calculation of the test statistic, K,,,,, is
with regards to ties in the data set. As the statistic is a function of the
product of the spacings between the observations, any ties among the
observations will set the test statistic equal to zero. It is therefore
essential that the data set does not contain ties, if the entropy statistic
is to be used. Theoretically, as the data is assumed to be from a
continuous distribution, ties occur with probability zero. Of course, in
practice it is not uncommon to encounter ties due to rounding and
discretization of the data. One solution is to employ fixed-variability
jittering of the data, as also suggested by Minnotte, Marchette and
Wegman (1998) in their work on density mode estimation.

2.2. Power Comparison of the Entropy Statistic
with Existing Tests

One of the commonly used statistics for testing goodness of fit of the
von Mises distribution is the U? statistic. Developed by Watson (1961),
it is an invariant adaptation of the Cramer-von Mises statistic:

2 2 2
2 _ — —
v=n [ [F,.(e) FO) - [ R F(¢)}dF(¢)] dF (6).

Lockhart and Stephens (1985) use the asymptotic distribution of U? to
tabulate critical values for various cases, including the case when
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neither the location nor shape parameters of the von Mises dis-
tribution are known. They also report that Monte Carlo studies vali-
date their critical values for n > 20.

The sample version of Watson’s statistic is given by

4 2—1\* /. 1)\ 1
=3 {00} n(e-3)

i=1

where z; = F(x;; i, k). There is no closed form solution for the von
Mises distribution function. Numerical methods can be used; other-
wise tables are available as well. However, this can be time consuming
for relatively large samples.

Bowman (1992) develops a density based, integrated squared error
test statistic. Letting

e(x) = Efa(x),

where the expectation is taken under the null hypothesis, he defines the
statistic

1= [ o) - o).

oo

Bowman (1992) proposes using the kernel density estimate f,,, with the
smoothing parameter given by Parzen’s (1962) formula in the case of
the von Mises distribution. Critical values are obtained by Monte
Carlo simulations, and are given for various sample sizes and values
of k.

For the von Mises case, Bowman (1992) defines the integrated
squared error statistic as

I=-M(0,4™ (A(h (n_l ;M —x, A [AR)])
——ZMoc, A, A7 AP AR))) + M(0, A~ [A(RARY).
with

h = A" [exp{(4/3)°n " log A(%)}],

Copyright ©2000. All Rights Reserved.



AN ENTROPY-BASED TEST 329

and M is the von Mises density function. Clearly, the computation of
K,.» 1s far simpler than that of 7, as I requires numerous evaluations of
Aand 47N

Computationally, the entropy statistic, K,,, is much less cumber-
some than either of the two statistics above, and practitioners of
statistics would find K, an attractive alternative to U? and /.

However, this computational edge over U? and I would not be
meaningful if the entropy statistic did not compete in terms of power.
Power comparisons between the three statistics follow. For samples of
size 25, 50, 75 and 100, Bowman (1992) performs Monte Carlo power
comparisons between U? and 1. The alternative hypotheses considered
are mixtures of the von Mises distribution:

1. Bimodal
/2)VM(r, 5)+(1/2)VM((37/2), 5)
2. Skewed
2/3)VM(r,3)+(1/3)VM(0.627, 3)
3. Long-tailed
(1/3)VM(r,8)+(2/3)VM(r,0.1)
4. Half von Mises
{ 2VM(m,2) 7<0<2n«
0 0<f<m.

With 1000 iterations used for each case, Bowman’s (1992) results are
reproduced in Table II. He shows that the integrated squared error
statistic outperforms U? for the bimodal and skewed alternatives. For
the long-tailed distribution, U? is far superior, while the two statistics
are fairly equal for the half von Mises. Simulated power of the entropy

TABLE II Power comparison between U?, I and K, Powers for I and U? are from
Bowman (1992)

Sample size
n=25 n=50 n=75 n=100
Distt. I U Kyas I U Kssp I U Kyps 1 U Ky

074 058 0.63 097 091 090 100 099 097 100 100 099
0.14 0.10 014 022 0.16 023 027 024 028 047 029 0.32
0.14 038 016 024 056 035 040 075 049 051 087 0.69
043 045 074 082 0.81 098 097 093 1.00 1.00 099 1.00

BN =
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statistic, K., for the same alternatives used by Bowman (1992), is also
given in Table II. 5000 iterations have been used in this simulation.
Under the bimodal alternative, K,,, beats U? for small samples, n =25,
and its power is only slightly lower than that of U? and I for the other
sample sizes. For the skewed alternative, K,,,, is uniformly better than
U?, and again quite close to 1. U? has a clear advantage under the
long-tailed alternative, however, K, has uniformly better power
than I. Under the half von Mises alternative, it is interesting to note
that although 7 is based on kernel methods, and thus smooths over
the sharp edge of the half von Mises distribution, it still outperformed
U. However, K, outperformed both 7 and U2, most decisively for
the smaller sample sizes.

In addition to comparing K,,,, to the results of Bowman (1992), the
entropy statistic was compared to U” for two other alternatives, which
closely resemble the von Mises distribution: the cardoid and triangular
distributions. The results are given in Table III. The entropy statistic
clearly has higher power for both alternatives and all sample sizes.
Bowman’s (1992) 7 statistic was not included in this comparison since
it is not commonly used.

Bowman (1992) comments that an entropy statistic for testing
goodness of fit of the von Mises distribution changed too quickly as a
function of «, creating difficulty in the control of the level of the test.
Table IV shows the simulated level of K,,,,, generating data from a von

TABLE III Power comparison between U? and K,,,, based on 5000 iterations

Sample size

n=25 n=>50 n=75 n=100

Distribution KQ,ZS I]2 K5,50 U2 K7,75 t]2 KB,IOO Uz

1. Cardoid 0.11 0.08 0.15 0.11 0.21 0.14 0.24 0.18
2. Triangular  0.09 0.06 0.12 0.08 0.16 0.08 0.22 0.10

TABLE IV Simulated levels of K,,,, based on 5000 iterations (= 0.05)

Sample size
K n=25 n=50 n=175 n=100
1 0.0496 0.0524 0.0472 0.0498
3 0.0526 0.0560 0.0546 0.0472
5 0.0532 0.0518 0.0468 0.0538
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Mises distribution with various sample sizes and values for . The
control of type I error does not seem to be a problem in our work, as
the simulated levels are all quite close to the desired 0.05.

2.3. Concluding Remarks

The maximum entropy characterization of the von Mises distribution,
as proposed in Section 2, is over the class of all probability distri-
butions on the circle with fixed mean direction and circular variance.
Since the entropy statistic, K,,, is based on this characterization,
the statistic should not be used to distinguish between the von Mises
distribution and a distribution outside of this class of distributions.
In particular, the uniform distribution on {0,27) has an undefined
mean direction, and thus the entropy statistic should not be used
when the alternative hypothesis is uniformity. Instead, to test between
the uniform and von Mises distributions, the Rayleigh test is recom-
mended (see Mardia, 1972, p. 133 and Fisher, 1993, p. 82).
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